Chemistry 1st Year Scheme of Work 2025-26 | w/b | Content – teacher
1 (double lesson) | Test – teacher 1
(double lesson) | Practical – teacher 1
(double lesson) | Content – teacher
2 (single lessons) | Test – teacher 2
(single lessons) | Practical – teacher 2
(single lessons) | |--------------------------|--|-------------------------------------|--|--|---|---| | Sep | Course introduction and lab rules | (| 1. Magnesium
silicide | 2.1.1 Relative atomic masses 2.1.2 Compounds, | (emgeresser) | (emg.e recently | | 8 th | 2.1.1 Atomic structure and isotopes | | | formulae | | | | Sep
15 th | 2.1.2 Balancing equations | 0. Induction test | | 2.1.5 REDOX:
oxidation numbers
and redox
reactions | | | | Sept
22 nd | 2.1.3 Amount of substance: the mole 2.1.3 Determining empirical and molecular formulae | | | 2.2.1 Electronic structure: energy levels, shells, subshells, atomic orbitals, electron configurations | | | | Sept
29 th | 2.1.3 Water of crystallisation | | 2. Finding the formula of copper oxide (preparation for practical 3) | 2.2.2 Bonding and structure: ionic, covalent, dative covalent | | | | Oct
6 th | 2.1.3 Reacting mass calculations | | 3. ASSESSED PRACTICAL: PAG 1 Determination of the formula for magnesium oxide | 2.2.2 Bonding and structure: ionic, covalent, dative covalent | | | | Oct
13 th | | 1. Atomic structure & ½ moles | 4. Finding the value of x in the formula: CuSO ₄ .xH ₂ O | 2.2.2 Shapes of molecules and ions | | | | Oct
20 th | 2.1.3 Volumes of gases | | 5. Finding the relative atomic of an unknown metal | 2.2.2
Electronegativity
and bond polarity | | | | | | | Autumn ½ term: Oc | t 27 th – Oct 31 st | | | | Nov
3 rd | 2.1.3 Volumes and concentrations of solutions | | | 2.2.2
Intermolecular
forces | | | | Nov
10 th | 2.1.3 Ideal gases | | | 3.1.1 Periodicity:
trends in electron
configuration and
ionization energy | 4. Bonding, shape & intermolecular forces | | | Nov
17 th | 2.1.3 Percentage
yield and atom
economy
2.1.4 Acids and
bases | | | 3.1.1 Periodic trends in structure and melting point | | | | Nov
24 th | 2.1.4 Acid-base titrations | | [Reactions of acids] | 3.1.1 Periodic trends in structure and melting point | | | | Dec
1 st | 2.1.4 Acid-base titrations | 2. Full moles | 6a. Preparing a standard solution | 3.1.2 Group 2 | | 9. Group 2 | | Dec
8 th | | | 6b. Determination of
concentration of HCI
(preparation for
practical 7) | 3.1.3 Group 7 properties & displacement reactions | 5. Periodicity | | | Dec
15 th | | | 7. ASSESSED PRACTICAL: PAG 2 Identification of an unknown carbonate | 3.1.3 Group 7 uses & disproportionation | | 10. Group 7: The halogens | | | | | Christmas holidays: D | | | 11.0 ==: | | Jan
5 th | 4.1.1 Organic
Chemistry: basic
concepts | 3. Acids, bases & electrons | | 3.1.4 Qualitative analysis: tests for halide ions | | 11. Group 7: The halides | | Jan
12 th | 4.1.1 Organic
Chemistry: | | | 3.1.4 Qualitative analysis: tests for ions | | 12a. Demo: Qualitative analysis (preparation for 12b) | | | functional groups, | | | | | | |-------------------------|--|---|---|---|---------------------------|---| | Jan
19 th | 4.1.1 Structural isomerism | | | 3.2.1 Enthalpy changes: endothermic/exoth ermic reactions, activation energy, enthalpy change definitions | | 12b. ASSESSED PRACTICAL PAG 4 Identifying unknowns | | Jan
26 th | | | | 3.2.1 Enthalpy
changes:
calculations
involving
experimental data | 6. Group 2 and
Group 7 | | | Feb
2 nd | 4.1.2 Alkanes,
combustion and
radical substitution | Mid-year exam | 18. Alkanes and alkenes | | | 13. Enthalpy change of combustion | | Feb
9 th | 4.1.3 Alkenes,
stereoisomerism | | | 3.2.1 Enthalpy
changes:
calculations
involving bond
enthalpies | | 14. Determination of enthalpy change of neutralisation | | | <u>'</u> | <u> </u> | Spring ½ term: Fe | | <u>'</u> | <u>'</u> | | Feb
23 rd | 4.1.3 Alkenes:
electrophilic
addition | | | 3.2.1 Enthalpy changes: calculations involving Hess cycles | | | | Mar
2 nd | 4.1.3 Alkenes:
other reactions
(hydration,
hydrogenation) | 9. Basic concepts
and alkanes | | 3.2.2 Reaction
rates: collision
theory & measuring
rate | | 15. ASSESSED PRACTICAL PAG 3 Determination of an enthalpy change by Hess' Law | | Mar
9 th | 4.1.3 Addition polymerization | | | 3.2.2 Reaction rates: catalysis | 7. Enthalpy changes | | | Mar
16 th | 4.2.1 Alcohols:
properties,
classification and
oxidation | | | 3.2.2 Reaction rates: Boltzmann distribution | | 16. Rate of reaction of CaCO₃ and HCl | | Mar
23 rd | 4.2.1 Alcohols: oxidation | 10. Alkenes | 19a. Reactions of alcohols | 3.2.3 Chemical equilibria: Le Chatelier's principle | | | | | 1 | | Easter holidays: M | | | <u> </u> | | Apr
13 th | 4.2.1 Alcohols:
other reactions
(elimination,
substitution) | | 19. Oxidation of ethanol (preparation for practical 20) | 3.2.3 Chemical
equilibria: Le
Chatelier's
principle | | 17. To illustrate Le
Chatelier's Principle | | Apr
20 th | | | | 3.2.3 Chemical equilibria: K₅ | 8. Rates and equilibrium | | | Apr
27 th | 4.2.2 Haloalkanes | 11. Alcohols | 21. Hydrolysis of
haloalkanes | 4.2.4 Analytical techniques: infrared spectroscopy, mass spectrometry, | | | | May
4 th | 4.2.2 Haloalkanes | 12. Haloalkanes
and analysis (Next
term!) | 20. ASSESSED PRACICAL PAG 5 Preparation of cyclohexene | 4.2.4 Combined techniques | | | | May
11 th | | | | | | | | May
18 th | | Tı | | udy leave
mins, covering all Year 1 co | ntent. | | | - | 1 | | Summer ½ term: M | | | |