Chemistry 1st Year Scheme of Work 2025-26 | w/b | Content | Test | Practical | |---|--|---|--| | | Course introduction and lab rules | | 1. Magnesium silicide | | Sep 8 th | 2.1.1 Atomic structure and isotopes 2.1.1 Relative atomic masses | | | | Sep 15 th | 2.1.2 Compounds, formulae, and equations 2.1.3 Amount of substance: the mole | 0. Induction test | | | Sep 22 nd | 2.1.3 Determining empirical and molecular formulae 2.1.3 Water of crystallisation | | 2. Finding the formula of copper oxide (preparation for practical 3) | | | 2.1.3 Water of crystallisation 2.1.3 Calculations involving: masses, concentrations, and | | 3. ASSESSED PRACTICAL: PAG 1 | | Sep 29 th | volumes of gases 2.1.3 Volumes and concentrations of solutions | 1. Atomic structure & ½ moles | Determination of the formula for magnesium oxide | | Oct 6 th | 2.1.3 Ideal gases | | 4. Finding the value of x in the formula:
CuSO ₄ .xH ₂ O | | Oct 13 th | 2.1.3 Percentage yield and atom economy | | Finding the relative atomic of an unknown metal | | Oct 20 th | 2.1.4 Acids and bases | 2. Full moles | 6a. Preparing a standard solution | | | 2.1.4 Acid-base titrations | Oct 27 th – Oct 31 st | | | Nov 3 rd | 2.1.5 REDOX: oxidation numbers and redox reactions | 00027 - 00031 | 6b. Determination of concentration of HCI | | al. | 2.2.1 Electronic structure: energy levels, shells, sub-shells, | | (preparation for practical 7) 7. ASSESSED PRACTICAL: PAG 2 | | Nov 10 th | atomic orbitals, electron configurations | | Identification of an unknown carbonate | | Nov 17 th | 2.2.2 Bonding and structure: ionic, covalent, dative covalent 2.2.2 Shapes of molecules and ions | 3. Acids, bases & electrons | | | Nov 24 th | 2.2.2 Electronegativity and bond polarity 2.2.2 Intermolecular forces | | | | Dec 1 st | 3.1.1 Periodicity: trends in electron configuration and ionization energy | | | | Dec 8 th | 3.1.1 Periodic trends in structure and melting point | 4. Bonding, shape & intermolecular forces | | | Dec 15 th | 3.1.2 Group 2 | 5. Periodicity | 9. Group 2 | | | | s: Dec 18 th – Jan 2 nd | 40 Cu . 7 The heles are | | Jan 5 th | 3.1.3 Group 7 3.1.4 Qualitative analysis: tests for ions | | 10. Group 7: The halogens11. Group 7: The halides12a. Demo: Qualitative analysis (preparation for 12b) | | Jan 12 th | 3.1.4 Qualitative analysis: tests for ions | 6. Group 2 and Group 7 | 12b. ASSESSED PRACTICAL PAG 4 Identifying unknowns | | Jan 19 th | 3.2.1 Enthalpy changes: endothermic/exothermic reactions, activation energy, enthalpy change definitions | | identifying anatowns | | Jan 26 th | 3.2.1 Enthalpy changes: calculations involving experimental data | | 13. Enthalpy change of combustion 14. Determination of enthalpy change of | | | 3.2.1 Enthalpy changes: calculations involving bond enthalpies | | neutralisation | | Feb 2 nd | 3.2.1 Enthalpy changes: calculations involving Hess cycles | Mid-year exam | 15. ASSESSED PRACTICAL PAG 3 Determination of an enthalpy change by Hess' | | Feb 9 th | 3.2.2 Reaction rates: calculating rate, catalysis, Boltzmann distribution | 7. Enthalpy changes | 16. Rate of reaction of CaCO ₃ and HCl | | | 1 | eb 16 th – Feb 20 th | | | Feb 23 rd | 3.2.3 Chemical equilibria: Le Chatelier's principle, effect of | | 17. To illustrate Le Chatelier's Principle | | 1 CU 23 | catalyst, K _c 4.1.1 Organic Chemistry: basic concepts, functional groups, | | | | Mar 2 nd | nomenclature 4.1.1 Structural isomerism | 8. Rates and equilibrium | | | Mar 9 th | 4.1.1 Structural isomerism 4.1.2 Alkanes, radical substitution | | | | Mar 16 th | 4.1.3 Alkenes, stereoisomerism, electrophilic addition | 9. Basic concepts and alkanes | 18. Alkanes and alkenes | | Mar 23 rd | 4.1.3 Addition polymerization, other reactions of alkenes | ununcs | | | | Easter holidavs: N | Mar 30 th – Apr 10 th | | | Apr 13 th | 4.2.1 Alcohols: properties and reactions | 10. Alkenes | 19a. Reactions of alcohols | | Apr 20 th | 4.2.2 Haloalkanes | 11. Alcohols | 19. Oxidation of ethanol (preparation for practical 20) | | Apr 27 th | 4.2.4 Analytical techniques: infrared spectroscopy, mass | | 21. Hydrolysis of haloalkanes 20. ASSESSED PRACICAL PAG 5 | | May 4 th | spectrometry, combined techniques Past papers | 12. Haloalkanes and | Preparation of cyclohexene | | | 1 St. com about Logic about | analysis
Study leave | | | na - a - th | | TURV IONUO | | | May 11 th May 18 th | · · | 15 mins, covering all Year 1 | content |